

Analysing the Behaviour of Distributed Software Architectures: a Case Study

Jeff Magee, Jeff Kramer and Dimitra Giannakopoulou

{jnm,dg1,jk}@doc.ic.ac.uk
Department of Computing, Imperial College of Science, Technology and Medicine

180 Queen’s Gate, London SW7 2BZ, UK.

Abstract
A Software Architecture is the overall structure of a system in
terms of its constituent components and their interconnections.
In this paper, we describe work to associate behavioural
specifications with the components of a distributed software
architecture and an approach to analysing the behaviour of
systems composed from these components. The approach is
based on the use of Labelled Transition Systems to specify
behaviour and Compositional Reachability Analysis to check
composite system models. The architecture description of a
system is used directly to generate the model used for analysis.
Analysis allows a designer to check whether an architecture
satisfies the properties required of it. The approach is illustrated
using a case study of an Active Badge system.

1. Introduction

Software Architecture has been identified as a promising
approach to bridging the gap between requirements and
implementations in the design of complex systems. A
Software Architecture describes the gross organisation of
a system in terms of its components and their interactions.
The initial emphasis in Software Architecture specification
has thus been in capturing system structure[5]. The
authors have previously published papers on the use of the
architecture description language Darwin for specifying
the structure of distributed systems and subsequently
directing the construction of those systems[8,9]. Darwin
can be used to organise CORBA based distributed
systems[10]. Darwin describes a system in terms of
components which manage the implementation of
services.. Structure is specified in Darwin by declaring the
bindings between the services required and provided by
component instances. Darwin has both graphical and
textual forms with appropriate tool support.

In this paper we investigate the use of Darwin as the
framework for specifying the component structure and
their potential interactions for the purpose of behaviour
analysis rather than system construction. Darwin has been
designed to be sufficiently abstract to support multiple

views (cf. [7]), two of which are the behavioural view (for
behaviour analysis) and the service view (for construction)
(Figure 1). Each view is an elaboration of the basic
structural view: the skeleton upon which we hang the flesh
of behaviour specification or service implementation.

Behavioural View Service View

Structural View

Analysis Construction/
implementation

Figure 1. Common Structural View with Service and
Behavioural Views

In previous papers we have discussed the use of Darwin to
produce the service view, with components providing and
requiring services at their interfaces and with
implementation definitions for the primitive components.
In this paper we concentrate on the behavioural view using
labelled transition systems (LTS) for behaviour
specification and analysis. We have chosen to use LTS as
it supports the appropriate compositionality (using
Compositional Reachability Analysis CRA) with the
components specified simply as finite state automata[3]. In
addition, we have techniques for analysing for both safety
[2] and liveness [3] properties. This is supported by
software tools which provide for automatic composition,
analysis, minimisation, animation and graphical display.
Rather than describe the underlying theory or details of the
analysis techniques and their relation to Darwin, in this
paper, we illustrate the approach by example.

Fifth IEEE Workshop on Future Trends of Distributed Computing Systems, FTDCS ’97,
Tunisia, October 1997.

2. Architecture Behaviour specification:
an Example
The example is taken from an Active Badge personnel
location system implemented by one of the authors in the
Regis programming environment using hardware from
Olivetti Research Laboratories in Cambridge. A
description of this system together with a description of
the implementation architecture in Darwin may be found
in [9]. Active Badges emit and receive infrared signals
which are received/transmitted by a network of infrared
sensors connected to workstations as depicted in Figure 2.
The system permits the location and paging of badge
wearers within a building.

2.1 Sensor network

s s s s

s s s

s s s s

Ethernet
RS232

Infrared
sender/
receivers

sticky

black

water

Figure 2 - Active Badge Sensor Network

Each sensor consists of transmitter and receiver sub-
components. The receiver produces badge sighting
indications at its interface while the transmitter accepts
commands to page a specific badge. Commands may
consist of directions to play a tune on the badge’s speaker
or to turn on an LED. In this analysis, we do not
distinguish between the various forms of command.
Commands may be cancelled before they have been
received by a badge or they may be acknowledged if sent
successfully. The structure of a SENSOR component is
depicted in Figure 3 together with the Darwin description
of that structure.

The Darwin description of SENSOR declares an instance
of each of the primitive component types RX and TX
representing the receive and transmit behaviour
respectively. The interface of the component consists of a
set of primitive actions which are bound to their
counterparts in the primitive component specification. In
an implementation these actions, which are declared as
portals here, become services either provided or required
by a component[8]. In this more abstract view, no
commitment is made as to the location of the
implementation of an action, calling direction and datatype

TX

RX

SENSOR

command
cancel
ack

sight

component SENSOR {
portal command; cancel; ack; sight;
inst TX; RX;
bind

command -- TX.command;
cancel -- TX.cancel;
ack -- TX.ack;
sight -- RX.sight;

}

Figure 3 - Description of SENSOR component in Darwin

Primitive Component behaviour
The behavioural specification for SENSOR involves
describing each of its primitive sub-components as a finite
state automata in a CSP-like[6] notation. This notation is
used as a concise way of describing the Labelled
Transition System (LTS) of the component for analysis
purposes. It is an “ascii” notation to simplify parsing by
the analysis tools.

const NBAD = 2 //number of badges

RX = (sight[b:1..NBAD] -> RX).

command.1

command.2

ack.1
cancel.1

ack.2
cancel.2

-1 0 1 2

command.1
command.2

command.1
command.2

sight.1
sight.2

0

TX = (command[b:1..NBAD] ->
(ack[b] -> TX
| cancel[b] -> TX
| command[c:1..NBAD]->ERROR)).

Figure 4 - Component RX & TX behaviour specification

(transitions go clockwise, -1 labels the ERROR state).

Figure 4 gives the primitive component specification
together with its LTS in diagrammatic form for RX and
TX. These diagrams are generated by our analysis tools as
an aid to comprehension. The diagrams here illustrate the
model for two badges (ie NBAD = 2). The RX
specification simply states that a badge sighting for a
badge can occur at any time. The specification for TX
states that a command for a specific badge may be
followed either by a request to cancel that command or an
acknowledgement from that badge. The sensor hardware
can only buffer one command to be sent to a badge at a
time. Consequently, the specification states that an attempt
to carry out another command before the previous
command is either cancelled or acknowledged is an error.
Note that actions are indexed/subscripted by the identity
of the badge they apply to. In the implemented badge
system, the badge identity is a parameter to actions. In
general, action subscripts provide a convenient way to
model parameters for the purposes of analysis, although
care must be taken to restrict the range of subscripts or
intractable models may result.

Composite Components
Composite components are simply the parallel
composition of their constituent behaviours. Processes
synchronise on shared actions. For example, the Darwin
specification for the SENSOR component generates the
following LTS specification:

||SENSOR =(RX || TX)

@ {command, cancel, ack, sight}.

The LTS notation distinguishes between process
expressions which may use action prefix (->), choice (|)
and recursion to specify primitive component behaviour
and composition expressions which may only use parallel
composition (||) and re-labelling (/). These restrictions
mean that the notation can only describe finite and,
consequently, potentially analysable models. The simple
composition expression for SENSOR does not require re-
labelling since actions are referred to by the same label in
the composite component as in the constituent primitive
components. As we will see in the following, in general,
bind statements in Darwin lead to re-labelling in the LTS
specification. The @ symbol specifies the set of action
labels (alphabet) which are visible at the interface of the
component and thus may be shared with other
components. It restricts the alphabet of the LTS to the
actions which are prefixed by these labels. All other
actions are “hidden” and will appear as “silent” or “tau”
actions during analysis if they do not disappear during
minimisation. Figure 5 gives the composite component
structure for SENSORNET.

sensor[1]
:SENSOR

SENSORNET
command

cancel
ack

sight

tx

rx

sensor[NLOC]
:SENSOR

interface TRANS {
command[1..NBAD][1..NLOC];
cancel [1..NBAD][1..NLOC];
ack [1..NBAD][1..NLOC];

}

interface REC {
sight [1..NBAD][1..NLOC];

}

component SENSORNET {
portal

tx: TRANS;
rx: REC;

forall j = 1 to NLOC {
inst sensor[j]:SENSOR;
forall k = 1 to NBAD bind

sensor[j].command[k]
-- tx.command[k][j];

sensor[j].cancel[k]
-- tx.cancel[k][j];

sensor[j].ack[k]
-- tx.ack[k][j];

sensor[j].sight[k]
-- rx.sight[k][j];

}
}

Figure 5 - composite component SENSORNET .

A separate instance of SENSOR is declared for each
location at which a badge may be detected. There are
NLOC locations numbered from 1 to NLOC. The interface
to SENSORNET is structured using Darwin interface types
TRANS and REC. In an implementation, these translate to
IDL descriptions with subscripts becoming operation
parameters. In the behavioural specifications, interface
instance names simply become action label prefix names.
Interested readers who consult the badge system
implementation in [3] will see that multiplex and de-
multiplex components are required to implement the
complex binding between sensor components and the
interface to the SENSORNET component. This is because
in our abstract description, actions and thus interfaces do
not have a physical location whereas in general an

implementation will fix the provision of an interface to a
specific server. In the sensor network, as depicted in
Figure 2, sensors are controlled by different machines.
The behavioural specification which corresponds to the
Darwin description of SENSORNET is given below:

||SENSORNET = (sensor[1..NLOC]:SENSOR)

/{rx.sight[i:1..NBAD][j:1..NLOC]
/sensor[j].sight[i],
tx.command[i:1..NBAD][j:1..NLOC]
/sensor[j].command[i],
tx.ack[i:1..NBAD][j:1..NLOC]
/sensor[j].ack[i],
tx.cancel[i:1..NBAD][j:1..NLOC]
/sensor[j].cancel[i]}
@{rx,tx}.

Component instantiation is modelled by creating a copy of
a process (eg. SENSOR) with each action label contained
in the process prefixed by the instance name. Thus the
command[1] action provided by SENSOR becomes
sensor[2].command[1] in the instance sensor[2].
Re-label specifications are of the form new-label/old-
label.

2.2 Location Service
The badge system location service stores the current
location of each badge as determined from the sighting
events generated by the sensor network. The location
service is represented as the component LOCATE with
interfaces as described below in Figure 6. The interface of
type REC is as described in Figure 5. The LOC interface
provides a means to query the location of a badge with the
location of that badge reported by a corresponding at
event. If a badge changes location then the location
service uses the at event to signal the change
spontaneously .

LOCATE
rx:REC where:LOC

interface LOC {

query[1..NBAD]; at[1..NBAD][1..NLOC];
}

Figure 6 - location service component SENSORNET

The behaviour of LOCATE was implemented as a single
process in Regis, however, to specify the behaviour
succinctly, we can utilise concurrency. The current
location of each badge is stored by a BADGELOC
process. The LOCATE service is then the concurrent
composition of these processes as shown below.

BADGELOC = BADGELOC[1],
BADGELOC[i:1..NLOC]

=(sight[i] -> BADGELOC[i]
|{sight[j:1..i-1],sight[j:i+1..NLOC]}

-> at[j] -> BADGELOC[j]
| query -> at[i] -> BADGELOC[i]
).

// service stores locations of all badges
||LOCATE = (badgeloc[1..NBAD]:BADGELOC)

/{rx.sight[i:1..NBAD][j:1..NLOC]
/badgeloc[i].sight[j],
where.query[i:1..NBAD]
/badgeloc[i].query,
where.at[i:1..NBAD][j:1..NLOC]
/badgeloc[i].at[j]}}
@{rx,where}.

It would be possible to describe LOCATE as a
composition of BADGELOC processes using Darwin,
however, the concurrency in LOCATE is more an artefact
of the modelling technique than a requirement of the
architecture, consequently, this was not done. This has not
restricted the freedom to have LOCATE as either a
primitive or a composite component during design and
implementation.

2.3 Command Execution
Executing a badge command is analogous to setting up a
telephone call. As with telephone call processing
software, the Regis implementation of the badge system
created a new component/ process to deal with each
request to execute a badge command[9]. When describing
behaviour, we can only accommodate static process
structures and consequently, command execution is
modelled by replication with one BADGECOM per badge.
When requested to page a badge, the BADGECOM
component must first determine the location of that badge
and then reserve the sensor at that location for its
exclusive use. This exclusion is required since, as
specified in section 2.1, each sensor has only a single
command buffer. This exclusion is provided by a LOCK
component per location. The resulting structure is
depicted in Figure 7.

COMEXEC

where:LOC
exec:XEC

tx:TRANS com[1..NBAD]
:BADGECOM

lock[1..NBAD]
:LOCK

acquire release

interface XEC {
page[1..NBAD]; confirm[1..NBAD]; }

Figure 7 - command execution component COMEXEC

In the interests of brevity, we have omitted the Darwin
description. The behavioural specification of the LOCK
component is shown below:

LOCK =(acquire[i:1..NBAD]

-> release[i] -> LOCK).

This specifies that when the lock is acquired by a
BADGECOM component it must be released by the same
component (same index) before the lock can be acquired
again. The specification for BADGECOM is:

BADGECOM
=(page-> QUERY
|at[j:1..NLOC] -> BADGECOM),

QUERY
=(query -> at[i:1..NLOC] -> GETLOCK[i]

|at[j:1..NLOC] -> GETLOCK[j]),
GETLOCK[i:1..NLOC]

=(acquire[i] -> EXEC[i]
|at[j:1..NLOC] -> GETLOCK[j),

EXEC[i:1..NLOC]
=(command[i] -> WAITACK[i]
|at[j:1..NLOC] -> release[i]

->GETLOCK[j]),
WAITACK[i:1..NLOC]

=(ack[i] -> release[i] -> success
-> BADGECOM

|at[j:1..NLOC] -> cancel[i]
-> release[i] -> GETLOCK[j]).

Note that at any stage of the command execution protocol,
it is possible for the badge to change location (signalled by
at) and consequently, BADGECOM must release the lock
for that location and cancel the command before trying to
execute the command at the new location(see EXEC). For
completeness, the specification of COMEXEC is:

||COMEXEC = (com[1..NBAD]:BADGECOM

|| lock[1..NLOC]:LOCK)
/{lock[i:1..NLOC].acquire[j:1..NBAD]

/com[j].acquire[i],
lock[i:1..NLOC].release[j:1..NBAD]
/com[j].release[i],
tx.command[i:1..NBAD][j:1..NLOC]
/com[i].command[j],
tx.cancel[i:1..NBAD][j:1..NLOC]
/com[i].cancel[j],
tx.ack[i:1..NBAD][j:1..NLOC]
/com[i].ack[j],
where.query[i:1..NBAD]
/com[i].query,
where.at[i:1..NBAD][j:1..NLOC]
/com[i].at[j],
exec.page[i:1..NBAD]
/com[i].page,
exec.confirm[i:1..NBAD]
/com[i].success

} @{where,exec,tx}.

2.4 Active Badge service
The complete active badge service is provided by the
BADGEMAN component as depicted in Figure 8 together
with the composition expression describing its behaviour.
The interested reader may again check with [9] to see that
the architecture of the original implementation architecture
has been closely followed in developing the behaviour
specification.

BADGEMAN

LOCATE

COMEXEC

SENSOR
-NET

where

exec

rx

tx

||BADGEMAN

= (SENSORNET || LOCATE || COMEXEC)
@ {where, exec}

Figure 8 - Active Badge Service

3. Architecture Behaviour Analysis
The question that now must be answered is; given the
behaviour specification, what can we do with it? The
approach we have taken is to use compositional
reachability analysis to perform an exhaustive search of
the state space of the LTS model generated from the
behaviour specification.

Deadlock
The reachable state space for a system with two badges
and five locations consists of 202,275 states (871,350
transitions). In the example outlined in the foregoing,
there are no reachable deadlock or error states. However,
an earlier version of the specification which omitted the
line from BADGECOM shown in italics below:

BADGECOM =(page-> QUERY
|at[j:1..NLOC] -> BADGECOM),

QUERY =(query -> at[i:1..NLOC]
-> GETLOCK[i]

|at[j:1..NLOC] -> GETLOCK[i]),
This did result in a deadlock. Our analysis tools produced
the following trace of an action sequence in a system with
two badges (NBAD=2) which would lead to deadlock:

Trace to DEADLOCK:
<rx.sight.1.2, rx.sight.2.2
exec.page.1, exec.page.2>

This is the situation where each badge has moved to
location 2 and consequently the LOCATE component is
trying to execute the actions indicating there has been a
change of location (at.1.2, at.2.2). However, users
have instigated page commands on both badges and
consequently, the BADGECOM for each process is trying
to execute a query on LOCATE and is thus not able to
synchronise with at. Similarly, LOCATE cannot
synchronise with query - thus deadlock.

Error States
A (deliberately) incorrect implementation of the LOCK
component which did not provide mutual exclusion
yielded the following output from a reachability analysis:

Trace to property violation in SENSORNET:
<rx.sight.1.2, rx.sight.2.2,
exec.page.1, where.at.1.2,
tx.command.1.2, exec.page.2,
where.at.2.2, tx.command.2.2>

This is clearly the case where two commands have been
executed on the sensor at location 2.

Property Automata
Checks can be made that the model satisfies certain safety
properties by specifying these properties as automata and
composing them with the system[]. For example, the
following property depicted in Figure 9 together with the
automata it generates asserts that a page request for badge
ID must always be followed by a confirmation.

exec.page.1

exec.confirm.1

exec.page.1

exec.confirm.1

-1 0 1

property
CONFIRM(ID=1) =(exec.page[ID]

-> exec.confirm[ID]
-> CONFIRM).

Figure 9 - property CONFIRM

Test Scenarios
In addition to exhaustive testing, the analysis tools permit
a user to animate various test scenarios and examine the
resulting trace of actions. For example, the following trace
is the scenario in which badge 1 changes location from 1
to 3 while there is a page request outstanding for it:

<exec.page.1, where.query.1
where.at.1.1 -- badge 1 at location 1
lock.1.acquire.1, tx.command.1.1
rx.sight.1.3 -- badge 1 moved to location 3
where.at.1.3, tx.cancel.1.1

lock.1.release.1, lock.3.acquire.1
tx.command.1.3, tx.ack.1.3
lock.3.release.1, exec.confirm.1>

4. Conclusion
Software Architecture provides a sound basis for both
design and implementation [8,9,10]. In this paper, we have
illustrated the use of the Software Architectural
specification of a system as the basis for analysis. Our
approach to specifying the behaviour of architectural
elements using a process calculus notation differs only in
detail from that outlined in [1]. Our approach is
distinguished by the direct use of the structural
architecture description for both construction and analysis
and in the analysis techniques utilised. We are currently
investigating the applicability of our approach in the
context of industrial case studies.

Acknowledgements
We gratefully acknowledge the EPSRC (Grant Ref: SAA
GR/J52693 and TRACTA GR/J 87022) and the EU
(ARES Framework IV contract 20477) for their financial
support.

References
1. Allen R. and Garlan D., Formalizing Architectural

Connection, (Proc. of 16th Int. Conf. on Software
Engineering (ICSE 16), Sorrento, May 1994, 71-80.

2. Cheung S.C. and Kramer J., Checking Subsystem Safety
Properties in Compositional Reachability Analysis, (Proc. of
18th IEEE Int. Conf. on Software Engineering (ICSE-18),
Berlin, 1996), 144-154.

3. Cheung S.C., Giannakopoulou D., and Kramer J.,
Verification of Liveness Properties using Compositional
Reachability Analysis, accepted for (ESEC/FSE 97), Zurich,
Sept. 1997).

4. Giannakopoulou D., Kramer J. and Cheung S.C., TRACTA:
An Environment for Analysing the Behaviour of Distributed
Systems, (Proc. of 1st ACM SIGPLAN Workshop on
Automatic Analysis of Software (AAS ‘97)), Paris, January
1997, 113-126.

5. Garlan D. and Perry D.E., Introduction to the Special Issue
on Software Architecture, IEEE Transactions on Software
Engineering, 21 (4), April 1995, pp 269-274.

6. Hoare, C.A.R., Communicating Sequential Processes,
Prentice-Hall, Englewood Cliffs, N.J., 1985.

7. Kruchten P.B., The 4+1 Model of Architecture, IEEE
Software, 12 (6), Nov. 1995, pp 42-50.

8. Magee J., Dulay N., Eisenbach S., Kramer J., Specifying
Distributed Software Architectures, ESEC ‘95, Sitges,
September 1995, LNCS 989, 1995, 137-153.

9. Magee J., Dulay N. and Kramer J., Regis: A Constructive
Development Environment for Distributed Programs,
Distributed Systems Engineering Journal, 1 (5), Special Issue
on Configurable Distributed Systems, (1994), 304-312.

10. Magee J., Tseng A., Kramer J., Composing Distributed
Objects in CORBA, (Third International Symposium on

Autonomous Decentralized Systems (ISADS 97), Berlin,
Germany, April 9 - 11, 1997.

